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and attempts to robustify the nonlinear least squares processing have failed.
An alternative is to preprocess each of the range measurement sequences,
eliminating the outliers and replacing them if necessary. Each sequence of
range measurements is preprocessed by robustly fitting a cubic spline
using iteratively reweighted least squares. Due to the nature of spline
fitting and the possible dense bursts of outliers, the choice of a good set
of initial weights for use in the iteratively reweighted least squares is
important to the efficiency of the method. These initial weights are
determined using robust, local fitting techniques. Several robust techniques
have been tested for this local fitting application. The robust spline
preprocessing is illustrated with some especially troublesome data sequences
and the relative performance of several robust methods for choosing the
initial weights is compared.--.-....
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g INTRODUCTION

The RMS/MTTS instrumentation system located at MacGregor Range is range

measuring, multiple target tracking system. In order to obtain a vehicle

trajectory from this system, the range measurements from several receivers

are processed by least squares. Because the measured vehicle trajectories

of interest are often low altitude and because of the geometry of the re-

ceiving stations, the resulting nonlinear least squares equations are often

ill-conditioned. In addition, this measurement system is subject to out-

liers, sometimes dense bursts of outliers. This combination of ill-condition-

* : ing and outliers is lethal and our attempts to robustify the nonlinear least

squares estimation process have failed. An alternative is to preprocess each

of the range measurement sequences, identifying the outliers, and replacing

them if necessary. The ill-conditioned least squares problem can then be

treated without being troubled by outliers.

Suppose we preprocess the measurement sequence, R(tt), i = 1,N. For typical

F aircraft trajectories the measurement rate is 10/sec with a time of interest

of 40 - 120 sec so that N is often in the range 400 - 1200. The purpose of

the preprocessing may be to detect outliers, to precompute measurement variances

for future least squares processing, or to synchronize several different dis-

crete measurement sequences. The preprocessing of the range measurement

sequence, R(t), is done by fitting a cubic spline to the discrete measurements

* using iteratively reweighted least squares (IRWLS). Specifically, at the kth

iteration we minimize,iN (k (~k  () , 21

Wj wk(R(t) bi 8 e t

Jul.



are he cbic -sp~nes nd (k)

where Bi(.) are the cubic .-splines and bi  are the spline coefficients to

be estimated. The weights, W(k) are computed from the Hampel *-function

using the spline fit from the (k-l) - iteration.

;B ,

w~~ka)s(() <kIxl i)
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S (k-l estimates the dispersion in the residual, R(t) b f bkl1)R (t) The
value of Skl) can be computed either locally or globally from the residuals

at the (k-l) -.- iteration. The dispersion S(k-l) is a MAD estimate obtained

from

s(k-l) - median !R(tm) - bk-l)Bl(tm)If*6745 (4)
meT

If the set T is in some sense the set of points close to ti, the estimate

sk-l) is local. If the set T is the set, - {tmlm - 1,N} the estimate

is global. For the present application only the global estimate S(k-l)= s(k-1)

will be used. If a very long data sequence, say about one hour, a local

estimate would probably be preferable to the global estimate.

CHOICE OF KNOTS

Let (Tt. i - 1,M) be a set of knot times. These knot times are used to define

the cubic 5-splines, 8t(tj). Of most importance in the choice of the knot times

is their spacing, which determines the ability of the cubic spline to fit the

data. However, for each additional knot time there is one additional spline co-

efficient to be estimated, thus increasing the computational load. Thus, we want

* to have as few knots as possible and the rules for their choice simple and yet be

able to adequately represent the data. With this simple philosophy for selecting

knots we will try to assign a fixed number of data points, IPTO, to each knot in-

* 'terval. The first four knots are placed at the first data. The last knot inter-

val may have more than NPTO points but fewer than 2 • NPTO data points. If there

is a large time break in the data, a knot is placed at the beginning and end

30e



of the time break. The interval between these two knots has zero data ooints

and the interval immediately preceding the time break may have more than

NPTO points but fewer than 2 • NPTO points. If immediately after a time break

there is a second time break before NPTO points have been read, the few (less

than NPTO) points read between the two time breaks are discarded. If a time

break occurs while reading points for the first knot interval, the few (less

-_ than NPTO) points are discarded and the first four knots repositioned at the

first data time after the time break. If a time break occurs during the last

interval, the portion of the last interval contiguous to the previous interval

is kept and the remainder of the points in the last interval are discarded.

If there are at least NPTO points kept, these points form the last interval.

If there are less than NPTO points kept, these points are appended to the pre-

vious interval so that the number of knot intervals is reduced by one. The

time difference between successive data points which is used to define a time

* .break is named FITBRK. FITBRK is dependent on the sample rate. The time dif-

ference between successive data points used to define a time break in the first

and last knot intervals is FITBRK/5. This smaller value is used in the first

and last interval because it is critical to obtain a good fit in these intervals.

The flow chart on the following pages more clearly defines the logic for select-

. * ing the knot times. The following define the variables in the flow chart:

NOTS - number of interior knots R(.) - array of range measurements

KR a number of knot intervals IIPTS(.) - array of point counts for
V knot intervals

TT(.) - array of knot times
IBRK - logical denoting the occurrence

NCOUM * total data point count of a time break

T(.) - array of data times STA u data start time

ETA - data end time

4
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THE LEAST SQ11ARES NORMAL EQUATIONS

At the kt -h iteration of the fitting procedure the weighted sum of squares

N (k) k ~ B C) )2 (5)

is minimized. The least squares normal equations are obtained by differentiating

(5) with respect to b k). The least squares normal equations are

N (k) T k) N w (k)

jl juB(t T tj b Il 9 B(t ) R(t ) (6)

where 8T is the vector of cubic B-splines

B T(t) [B(t B2(t - - - (t (7)

Due to the nature of the B-splines the positive definite matrix on the left of

(6) is banded with three bands above and below the main diagonal. To conserve

storage the four distinct diagonals of this matrix are stored as columns of a

vertical matrix. The dimension of the vector b is MIOTS + 2 where 4OTS is

the number of interior knots. The banded least squared normal equations are

solved by a banded Cholesky decomposition algorithm. The sums of 'oth sides of

(6 ) are performed sequentially so that all of the ranges and weights are not

needed in core simultaneously. The IRWLS can be continued for a fixed number

of iterations or until the fit has converged.

INITIAL WEIGHTS

In many situations the IRWLS procedure works successfully when all of the

initial weights are set to one, i.e., the iteration is started with an ordinary

7
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r junweithted least sques solution. We have found that the use of the unweiht-

ed least squares start will usually result in convergence of the IRWLS cubic

spline to a good fit with outliers correctly identified, but that many fewer

iterations are required if a robust choice of initial weights is used. W/hen

outliers are present in either the first or last intervals, the choice of

initial weights in these intervals is most important.

The initial weights for the robust cubic spline fit are chosen on a localized

basis. Let R(t1 ), i - 1, NPTS(K) be the range measurements in the K!- knot

interval. To determine the weights W}°), i = 1 NPTS(K) In the Kth interval a

linear curve Is robustly fitted to the measurements in the interval. Several

* methods for robustly fitting the linear curve have been tried, including the

nested median method of Siegel l the method of Thefl [ 21, a modified Theil

method, and an M-estimate using a Hampel 0-function. Most methods performed

about equally well on the data sequences tested. The results of some of these

* tests are given in Appendix A. Because of its simplicity, the modified method

of Theil was selected for routine application. This method is described in the

following paragraph.

Let R be the median of the observations in the K!hknot interval.

R = median (R(t.)}
i - 1, NPTS'(K) (8)

Let t be the time corresponding to R. The median R can be represented as the

average of two observations,

R (R(t + R(t )/2 (9)
i) M 2)

where m, - m2 if NPTS(K) is odd. Oefine the set of slopes (S.}

" " 1



S R(ti) " R 1 a , NPTS(K) (10)

ti - t i .MI, M2

Let s be the median of the slopes,

s - median {S1 
}

i 1l, NPTS(K) (11)
i M mI, m 2

Let Fi be the residual,

- Fi = R(tI) - s(ti - t), I = 1, NPTS(K) (12)

Let F be the median of these residuals,

F = median {Fi}
i = 1, NPTS(K) (13)

Now compute the residuals,

ri =F i - F,i- , NPTS(K) (14)

The initial weights, W(o), are computed from these residuals using a Hampel

,-functton.

W(.) .* k i - 1,.NPTS(K) (15)

! (sk

Where sk is the robust dispersion parameter,

sk = median Itir 1 /.6745 (16)

Since the main concern in setting the initial weights is to protect the cubic

spline fit from the gross outliers, the break points of the Hampel l-function

are set at a 2., b 3, c a 4.



SOME EXAMPLES
0 Several hundred data passes have been run with the fitting procedure described.

Since there Is an average of maybe five receivers on each data pass, the

robust preprocessing method described has been used on more than one thousand
9,

measurement sequences. The method has performed successfully on all of

these sequences. Most of these sequences are rather uneventful, having only

a few isolated outliers. There have been some sequences which have some

rather dense bursts of outliers. These sequences best illustrate the ability

of the method described to detect outliers. Fig 1 presents a range measurement

sequence and Fig 2 the robust cubic spline fit to this sequence. Mote that the
6

outliers in Fig 1, which have been darkened, occur in many sizes. The

outliers at the top of the graph were added by hand since they all occurred

far off scale at the top. The sequence of Fig 1 has about 10% outliers.

All outliers have been successfully detected and removed by the robust spline

fit. The measurements in Fig 1 have two dense burst of outliers, one in the

interval (62356.6, 62359.5) and another in the interval (62367.2, 62375.4).

U The measurement sequence in Fig 3 has outlier bursts in the intervals (62358.4,

62362.6), (62374.4,.62376.4), and (62379.7, 62382.4). The sequence in Fig 3

has about 15% outliers. The sequence in Fig 5 has bursts of outliers

during the intervals (63117.8, 63122.6) and (63128.2, 63131.5). Any points

away from the main curve should be considered outliers in Figs 1, 3, and 5.

Note also in Figs 1, 3, and 5 that there are time breaks in the measurement

* "sequences, another important consideration in preprocessing. The cubic

spline fit to the sequence of Fig 1 is given in Fig 2. The cubic spline

fit to the sequence of Fig 3 is given in Fig 4 and the cubic spline fit

10
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to the measurement sequence in Fig 5 is given in Fig 6. The knot intervals

in Figs 2, 4, 6 are designed to contain twenty data points. Note that some

of the time breaks have been filled with fitted data points. The filling

of the time breaks is controlled by the length of the time breaks in

relation to the sample rate and the proportion of outliers found in a

knot interval. The robust cubic spline preprocessor has deleted all

*outliers from the measurement sequence, generated measurements during the

time breaks as des~red, and synchronized different measurement sequences

if desired. In addition the measurement variances are available for

further processing. The IRWLS cubic spline fit converged in 3 - 4

iterations for the examples displayed. This fairly rApid convergence is

dependent on a robust method for choosing good initial weights. Surprisingly,

the IRWLS cubic spline iteration for these examples also converges using an

unweighted least squares start, but at the expense of more iterations.

For the measurement sequences displayed here the IRWLS cubic spline fit

converged in 7 - 8 iterations using an unweighted least squares start.

m Thus, at least in these examples, a good choice of the initial weights

results only in a significant improvement in computing efficiency and not in

an improvement of fit. Besides a good selection of initial weights, another

important choice is the number of data points per knot interval, NPTO.

NPTO must be large enough so that is likely that only a fraction, say less

than one fourth of the data points in any interval will be outliers. On

the other hand, if NPTO is too large, the robust linear curve fit may not

be a good enough representation of the variation of the data in the interval.

11
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I, APPENDIX

This appendix describes several methods of choosing the initial weights

for the robust cubic spline preprocessing and compares the results of using

these methods on several data sets. Each of these methods robustly fits a

linear curve in each of the knot intervals and then computes the initial

weights from the curve fit residuals using a Hampel *-function. Let

R(tt), t1 -1, NPTS(k) be the range measurements in the klh knot interval.

Theil Method

Define the slopes sij

R(t 1  (tt )
S~~t t t  i

Let be the median of these slopes,

S * median (s jI
1,1J>f

-Define the residuals ;it

* R(t1) - t
S.

Let F be the median of the residuals, Ft

F median

1-I,NPTS(k)

Then the residuals rt * rt - r are used to compute the initial weights with a

Hampel *-function.

18



Nested Medians

Nested or repeated medians is a robust regression method recently described

by Siegel E1). Siegel shows that this method has the highest breakdown

method of any known method. This method is particularly easy to apply for

a linear fit. It is similar to the Theil method and modified Theil

method already described.

-Define the slopes

R(t,) - R(t1)
" 5jj, 1 tt (A-i)

Define ii by

- median {s (A-2)
Js ,NPTS(k)
i xi

and further let i be defined by

- i s median fi1 } (A-3)
iu- ,NPTS(k)

. Similarly, let aij be the intercepts

:. . R(ti, tj " tjt
.. al -~ J-i (A-4)i. t tt

-- Define i as

a median {a I (A-5)
J-, NPTS(k)

jai

...



and further define iby

* -median {}(A-6)
i-i ,NPTS.(k)

Let ri be the residuals

*r. * R t(t) - ti , -1 NPTS k) (A-7)

V.

The weights W(O) are computed from these residuals using a Hampel
i

*-function.

I

The following data sets were taken from the knot intervals of the data

sequences used previously to illustrate the application of the robust

range measurement preprocessing. The first data set, shown in Fig Al is

Staken from the measurement sequence given in Fig 1. The measurements in this

set are from the time interval 62356.6 - 62359.5. The second data set,

• _shown in Fig A2 is taken from the measurement sequence in Fig 5. The

measurements in this set are from the time interval 63128.2 - 63131.6.

In each of the data sets the weights are calculated from the residuals r by

W(O i/ (4-8)

Sakwhere fro) is a Hampel #-function with breakpoints 2., 3., 4. In both of

those data sets there are eight outliers in the sample of twenty. Each of

the robust linear methods seem to have no difficulty in identifying the

outliers in these data sets.

20
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